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Stochastic resonance between dissipative structures in a bistable noise-sustained dynamics
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We study an extended system that without noise shows a monostable dynamics, but when submitted to an
adequate multiplicative noise, an effective bistable dynamics arises. The stochastic resonance between the
attractors of thenoise-sustained dynamicsis investigated theoretically in terms of a two-state approximation.
The knowledge of the exact nonequilibrium potential allows us to obtain the output signal-to-noise ratio. Its
maximum is predicted in the symmetric case for which both attractors have the same nonequilibrium potential
value.
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I. INTRODUCTION

During the last few decades a wealth of research res
on fluctuations or noise have led us to the recognition tha
many situations noise can actually play a constructive r
that induces new ordering phenomena. Some examples
stochastic resonance in zero-dimensional and extended
tems @1–6#, noise-induced transitions@7#, noise-induced
phase transitions@8,9#, noise-induced transport@10–13#,
noise-sustained patterns@14–16#, noise-induced limit cycle
@17#, etc.

The phenomenon ofstochastic resonance~SR!—namely,
the enhancementof the output signal-to-noise ratio~SNR!
caused by injection of an optimal amount of noise into
nonlinear system—stands as a puzzling and promising co
erative effect arising from the interplay betweendeterminis-
tic and randomdynamics in anonlinearsystem. The broad
range of phenomena—drawn from almost every scien
endeavor—for which this mechanism can offer an expla
tion has been put in evidence by many reviews and con
ence proceedings. See Ref.@1# and references there to sca
the state of the art.

Most of the phenomena that could possibly be explain
by SR occur inextendedsystems: for example, diverse e
periments were carried out to explore the role of SR in s
sory and other biological functions@18# or in chemical sys-
tems @19#. These were, together with the possib
technological applications, the motivation to many rec
studies showing the possibility of achieving an enhancem
of the system response by means of the coupling of sev
units in what conforms anextended medium@2,3,5,6,20#, or
analyzing the possibility of making the system response
dependent on a fine-tuning of the noise intensity, as wel
different ways to control the phenomenon@21,22#.

In some previous papers@3–6# we have studied the sto
chastic resonant phenomenon in extended systems for
transition between two different patterns, and exploited
concept ofnonequilibrium potential@23,24#. The nonequilib-
rium potential is a special Lyapunov functional of the as
ciated deterministic system which for nonequilibrium sy
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tems play a role similar to that played by a thermodynam
potential in equilibrium thermodynamics@23#. Such a non-
equilibrium potential, closely related to the solution of th
time independent Fokker-Planck equation of the syste
characterizes the global properties of the dynamics: tha
attractors, relative~or nonlinear! stability of these attractors
and height of the barriers separating attraction basins, an
addition it allows us to evaluate the transition rates amo
the different attractors.

In this work we analyze a new aspect of such a probl
studying SR between the attractors of thenoise-sustained
dynamics@14,15#, that is: the same noise source that induc
the dynamics induces the transitions among both structu
and produces the stochastic resonant phenomenon. S
closely related work corresponds to the so-calleddoubly sto-
chastic resonance@25#, as well as to another previous wor
@26# related to noise-induced phase transitions@8,9#. In both
cases the authors have mainly resorted to a standard m
field approach, or to an estimate of the effective potent
while here we obtain the exact form of the noise-induc
patterns~stable and unstable ones! as well as the complete
form of the nonequilibrium potential. In this way we ca
obtain the transition rates and clearly quantify the SR p
nomenon by means of the SNR.

The organization of the paper is as follows. In Sec. II w
present the model and formalism to be used. After that,
discuss in Sec. III the stochastic resonance phenomenon
tween the homogeneous structure and the inhomogen
pattern. Finally, we present in Sec. IV some conclusions
future perspectives.

II. THE MODEL

We consider a one-dimensional system, limited to the
gion 2L/2<x<L/2, described by the following determinis
tic equation:

] tf~x,t !5]x@D~f!]xf#1F~f!, ~1!

assuming Dirichlet boundary conditions@that is f(6L/2)
50]. This equation can be written in a variational form a

] tf~x,t !52
1

D~f!

dV@f#

df~x!
, ~2!
©2004 The American Physical Society07-1
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where the potential

V@f#5E
2L/2

L/2

dxH 2E
0

f

df8D~f8!F~f8!1
1

2
@D~f!]xf#2J

~3!

is a Lyapunov functional@while D(f).0] for the determin-
istic dynamics and it is essentially the logarithm of the pro
ability density of configuration when Eq.~1! is perturbed by
an additive source of spatiotemporal white noise.

The starting point of our stochastic analysis will be E
~1! with an additional multiplicative noise, in the Stratono
ich interpretation, given by

] tf~x,t !52
1

D~f!

dV@f#

df~x!
1g~f!j~x,t !, ~4!

wherej is a Gaussian noise with zero mean and correla
^j(x,t)j(x8,t8)&52ed(x2x8)d(t2t8), e being the noise
intensity. For the coefficient of the noise term,g(f), we
adopt

g~f!5
1

AD~f!
, ~5!

in order to guarantee that the fluctuation-dissipation rela
is fulfilled @27#.

As we are considering the Stratonovich interpretation,
stationary solution of the associated Fokker-Planck equa
can be written as@28#

Pst@f#;exp~2Veff /e!, ~6!

where the effective potentialVeff@f# is given by

Veff@f#5V@f#2lE
2L/2

L/2

dx ln D~f!. ~7!

Here l is a renormalized parameter related toe throughl
5e/(2Dx) in a lattice discretization, whereDx is the lattice
parameter@28#.

The extremes ofVeff correspond to the stationary fixe
points of the noise-sustained dynamics. They can be c
puted from the first variation ofVeff(f) with respect tof
equal to zero, that is,

dVeff@fst#52E
2L/2

L/2

D~f!@]x„D~f!]xf…

1Feff~f!#df~x!dxuf5fst
50, ~8!

where

Feff~f!5F~f!1l
1

D~f!2

d

df
D~f! ~9!

is the effective nonlinearity which drives the dynamics.
We consider the case of a monostable dynamics in

sence of noise
02110
-

.

n

n

e
n

-

b-

F52f31bf2, ~10!

and we adopt a model of field-dependent diffusivity whi
induces an effective bistable dynamics. In particular we h
chosen

D~f!5
D0

11hf2 , ~11!

(D0 ,h.0), which corresponds to having a larger diffusivi
in low density~low f! regions and a lower diffusivity in high
density~largef! ones. With this functional form,Feff(f) in
Eq. ~9! results in

Feff52f31bf22
2lhf

D0
5f~f2f1!~f22f!, ~12!

wheref1,2 depend on parameters, in particular on the con
parameterl. It is worth noting here that in the determinist
problem (l50) the reaction term is monostable while, as w
increase the noise intensity, the effective nonlinear termFeff
becomes bistable@within the interval 0,l,b2D0 /(8h)]
and finally, for l.b2D0 /(8h), becomes again monostab
~reentrance effect!. Our choice ofF and D is one among
plenty of different forms for the diffusivity leading to a tran
sition from monostable to bistable and inducing the SR p
nomenon@see, for instance, the one used in@28# that corre-
sponds exactly to the inverse of the present diffus
coefficient, i.e., D(f)5D0(11hf2)]. Density-dependent
diffusivities arise in a large variety of systems modeled
reaction-diffusion equations@29#. In biology, for instance,
population dynamics is usually driven by a diffusivity th
depends on the local population@30#. We can also find ex-
amples in physics, a couple of them are in polymer phys
~where the diffusion can abruptly drop several orders
magnitude at the gelation point@31#! and in diffusion of hy-
drogen in metals@32#.

A remarkable point is thatf50 is always a root ofFeff
50 ~see Fig. 1!. This implies@from Eq. ~8!# that f(x)[0 is
an extremum ofVeff@f# for all values ofl. In what follows
we will call this structuref0 .

In order to obtain the nonuniform extremes of the pote
tial ~and also of the probability density! we must~numeri-
cally! solve

d

dx S D~fst!
d

dx
fstD1Feff~fst!50 ~13!

for the stationary regimen profilesfst(x). This approach al-
lows us to find both the stable and unstable solutions.
analyze their stability we need to calculated2Veff , that de-
fines a Sturm-Liouville problem, with orthogonality weigh
D(fst). From that analysis it results thatf0 ~defined before!
is stable forl.0, and in the bistability region we have tw
nonhomogeneous symmetric patterns: one unstablefu
~saddle! and one stablefs . The typical form of these pat
terns is illustrated in Fig. 2.
7-2
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In Fig. 3 we showVeff@fst# vs l, evaluated on the differen
stationary solutions. We definelc as the value ofl at which
we have symmetrical stability, i.e., whereVeff@f0#5Veff@fs#.

III. STOCHASTIC RESONANCE BETWEEN
STRUCTURES

We are interested in the stochastic resonance phenom
occurring in the above-described system. For a window
noise intensity the effective dynamics of the system
bistable, corresponding to a noise-induced nontrivial dyna
ics. We will resort to the so-calledtwo-state approximation
@33#, all details about the procedure and the evaluation of
SNR could be found in@5#. We consider now that the syste
is subject, in the adiabatic limit, to a time periodic signal
the form b5b01S(t) whereS(t)5Db sin(v0 t). The usual
way of rocking the potential is to introduce an additive pe
odic forcing~or linear periodic contribution to the potential!.
However, in the present case, a small periodic variation ob

FIG. 1. Form of the nonlinearities for the deterministic ca
(l50), bistable case (l5lc'0.8) and a monostable case (l
51.2) in the reentrance region. The vertical scale was change
the deterministic case in order to clarify the figure. The parame
used are:D051, h51/2, andb52. Note thatf50 remains as a
root in all cases.

FIG. 2. Fixed points of the noise-sustained dynamics of
problem. We showf0[0, the stable homogeneous solution, a
both nonhomogeneous patterns: the unstable~saddle! fu and the
stable onefs . Here we havel5lc'0.8, while the other param
eters values are the same as in Fig. 1.
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aroundb0 results to be more sensitive to induce the perio
change in the relative stability of the two attractors.

Up to first-order in the amplitudeDb ~assumed to be
small in order to have a subthreshold periodic input! the
transition ratesWi take the form

W1~ t !5m12a1Db sin~v0t !,
~14!

W2~ t !5m21a2Db sin~v0t !,

where the constantsm1,2 and a1,2 are obtained from the
Kramers-like formula for the transition rate@34#

Wf i→f j
5

l1

2p F detVeff@f i #

udetVeff@fu#uG
1/2

exp†2~Veff@fu#

2Veff@f i # !/e‡. ~15!

Herel1 is the unstable eigenvalue of the deterministic fl
at the relevant saddle point (fu) and

m1,25W1,2uS~ t !50 ,
~16!

a1,257
dW1,2

dS~ t !U
S~ t !50

.

These results allows us to calculate the autocorrela
function, the power spectrum, and finally the SNR, that
indicate byR. The details of the calculation were shown
Ref. @5#. For R, and up to the relevant~second! order in the
signal amplitudeDb, we obtain

R5
p

4m1m2

~a2m11a1m2!2

m11m2
5

p

4e

m1m2

m11m2
F, ~17!

where

F5E
2L/2

L/2

dxE
f0

fs~x!

D~f8!f82df8 ~18!

gives a measure of the spatial coupling strength. In our c
f0[0 and

in
rs

e

FIG. 3. Nonequilibrium potentialVeff@fst#, as a function ofl,
evaluated on the stationary patterns: curves correspond to s
(fs), homogeneous (f0), and unstable (fu) patterns. The arrow
indicates the point whereVeff@f0#5Veff@fs#, corresponding tol
5lc'0.8.
7-3
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VON HAEFTEN et al. PHYSICAL REVIEW E 69, 021107 ~2004!
F5D0E
2L/2

L/2

dxH fs~x!

h
2

arctan@Ahfs~x!#

h3/2 J . ~19!

In Fig. 4 we show the SNR as a function of the parametel
~which is proportional toe!. The existence of the typica
maximum is the characteristic fingerprint of SR. For a w
dow of noise intensity values, the system enhances the
put to the input periodic signal. We see that the maxim
SNR occurs at the symmetric situation, that is atl5lc .

A similar behavior is observed in general for a wide ran
of values forh and D0 compatible with a bistable effectiv
dynamics. In particular,lc is a monotonically decreasin
function of h, as we show in Fig. 5. For a given value ofh,
a numerical analysis of Eq.~17! indicates that the maximum
of SNR take place atlc(h). Note that, for a given value ofl,
h appears as an additional control parameter that allow
fine-tuning of the symmetrical condition. Finally, in Fig.
we showRc5R(lc) vs h in the range of values where Kram
er’s formulas apply@35#.

IV. CONCLUSIONS

The study of SR in extended or coupled systems, m
vated by both some experimental results and the techno
cal interest, has recently attracted considerable atten
@2–6,20#. In some previous papers@3–6# we have studied the

FIG. 4. Signal-to-noise ratio vsl as results from Eq.~17!. Here
b052, while other parameters remain unchanged.

FIG. 5. lc vs h parameter of diffusivity. For smallh valueslc ,
and hence the noise intensity, increase monotonically.
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SR phenomenon for the transition between two different p
terns, exploiting the concept ofnonequilibrium potential
@23,24#. In this work we have analyzed the SR phenomen
in an extended system from a different point of view, that
studying SR between two attractors of thenoise-sustained
dynamics@14,15#.

Some closely related work corresponds to the so-ca
doubly stochastic resonance@25#, as well as to a previous
work @26# that is tightly related to noise-induced phase tra
sitions @8,9#. In both cases the authors have mainly resor
to a standard mean-field approach, or to some estimate o
effective potential. Here we adopt a different approach,
taining numerically the exact form of the patterns~both the
stable and unstable ones! as well as the analytical expressio
of the nonequilibrium potential. In this way we were able
obtain the transition rates and clearly quantify the SR p
nomenon by means of the SNR.

We have seen that the nonhomogeneous spatial coup
through density-dependent diffusivity, changes the effect
dynamics of the system and, in agreement with@36#, that
such nonhomogeneous behavior could contribute to enha
the SR phenomenon. The form of the patterns, position of
attractors, and barrier’s height explicitly depend on the no
intensity. We have found that there are ranges or window
noise intensities where the phenomenon could arise~reen-
trance!.

By considering the adiabatic limit and exploiting the tw
state approximation we have theoretically predicted the
currence of SR between those patterns. It is worth remark
here that it is the same noise source, the one that sustain
bistable dynamics and induces SR for transitions among
corresponding structures. The maximum of the SR respo
occurs in the symmetric case, in agreement with the res
found in @5,6#. The SR phenomenon is robust with respect
variations of theh parameter of diffusivity, and whenh de-
creases the SNR maximum increases and shifts tow
higher l values. The last fact follows from the associat
shift of the noise-induced transition to larger noise intensit
which take place in the spatially uncoupled associated s
tem @i.e., the zero-dimensional system resulting from su
pressing the gradient term in Eq.~3!#.

FIG. 6. Signal-to-noise ratio atlc vs h. We can see a saturatio
phenomena ash decreases.
7-4
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The consideration of more general forms of couplings
many component systems will allow us to analyze SR
tween noise-induced patterns in activator-inhibitor-like s
tems. We will also study, within the present framework, t
competence between local and nonlocal spatial coupl
@4,6#, etc. These aspects, together with Monte Carlo simu
tions of the different cases, will be the subject of furth
work.
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