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Stochastic resonance between dissipative structures in a bistable noise-sustained dynamics
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We study an extended system that without noise shows a monostable dynamics, but when submitted to an
adequate multiplicative noise, an effective bistable dynamics arises. The stochastic resonance between the
attractors of thenoise-sustained dynamics investigated theoretically in terms of a two-state approximation.

The knowledge of the exact nonequilibrium potential allows us to obtain the output signal-to-noise ratio. Its
maximum is predicted in the symmetric case for which both attractors have the same nonequilibrium potential
value.
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[. INTRODUCTION tems play a role similar to that played by a thermodynamic
potential in equilibrium thermodynamid®3]. Such a non-
During the last few decades a wealth of research resultgquilibrium potential, closely related to the solution of the
on fluctuations or noise have led us to the recognition that itime independent Fokker-Planck equation of the system,
many situations noise can actually play a constructive rol&€haracterizes the global properties of the dynamics: that is
that induces new ordering phenomena_ Some examp'es a?étractors, relatiVéor nonlinea)‘ Stablllty of these attraCtorS,

stochastic resonance in zero-dimensional and extended sy&2d height of the barriers separating attraction basins, and in
tems [1-6], noise-induced transition§7], noise-induced addition it allows us to evaluate the transition rates among

phase transitiong8,9], noise-induced transpofl0—13, the different attractors.

noise-sustained patterfig4—16, noise-induced limit cycle In this work we analyze a new aspect of such a problem
[17], etc. studying SR between the attractors of theise-sustained

The phenomenon atochastic resonancéSR—namely, dynamics[1_4,1_Eﬂ, that is: the same noise source that induces
the dynamics induces the transitions among both structures,

the enhancementf the output signal-to-noise ratitSNR) i
caused by injection of an optimal amount of noise into a@nd produces the stochastic resonant phenomenon. Some

nonlinear system—stands as a puzzling and promising coofs/0Sely related work corresponds to the so-cadedbly sto-

erative effect arising from the interplay betwegeterminis-  Chastic resonancg25], as well as to another previous work
tic andrandomdynamics in anonlinear system. The broad [26] related to noise-induced phase transitip®$]. In both

range of phenomena—drawn from almost every scientifi€@S€S the authors have mainly resorted to a standard mean-

endeavor—for which this mechanism can offer an explanaﬁeld approach, or to an estimate of the effective potential,
hile here we obtain the exact form of the noise-induced

tion has been put in evidence by many reviews and confer

ence proceedings. See REf] and references there to scan Pattérns(stable and unstable oneas well as the complete

the state of the art. form of the nonequilibrium potential. In this way we can
Most of the phenomena that could possibly be explained?bta'” the transition rates and clearly quantify the SR phe-

by SR occur inextendedsystems: for example, diverse ex- nomenon by means of the SNR..

periments were carried out to explore the role of SR in sen- | € organization of the paper is as follows. In Sec. Il we

sory and other biological functioid8] or in chemical sys- Present the model and formalism to be used. After that, we
tems [19]. These were, together with the possible discuss in Sec. Il the stochastic resonance phenomenon be-

technological applications, the motivation to many recentWeen the homogeneous structure and the inhomogeneous

studies showing the possibility of achieving an enhancemeriattern. Finally, we present in Sec. IV some conclusions and

of the system response by means of the coupling of sever&fturé perspectives.

units in what conforms aextended mediun®2,3,5,6,20, or

analyzing the possibility of making the system response less Il. THE MODEL
dependent on a fine-tuning of the noise intensity,
different ways to control the phenomenf2i,22.

In some previous papef8-6] we have studied the sto- t
chastic resonant phenomenon in extended systems for th
transition between two different patterns, and exploited the A p(X,1) =0 [D(P)dy ]+ F (o), )
concept ofnonequilibrium potential23,24]. The nonequilib-
rium potential is a special Lyapunov functional of the asso-assuming Dirichlet boundary conditiorithat is ¢(=L/2)
ciated deterministic system which for nonequilibrium sys-=0]. This equation can be written in a variational form as

V[ ]
D(¢) 6¢(x)’

as wellas \ye consider a one-dimensional system, limited to the re-
gion —L/2<x=<L/2, described by the following determinis-
iec equation:

dp(x,t)=— 2
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where the potential F=—¢°+be? (10)
V[g]= L2 dx{ — J¢d¢’D(¢’)F(¢’)+ E[D(qb)aX(i)]z and we adopt a model of field-dependent diffusivity which
~L/2 0 2 induces an effective bistable dynamics. In particular we have

(3 chosen

is a Lyapunov functiondlwhile D (¢)>0] for the determin- D

istic dynamics and it is essentially the logarithm of the prob- D(¢)= _02, (1)
ability density of configuration when E¢l) is perturbed by 1+he

an additive source of spatiotemporal white noise.

The starting point of our stochastic analysis will be Eq.(Do,h>0), which corresponds to having a larger diffusivity
(1) with an additional multiplicative noise, in the Stratonov- in low density(low ¢) regions and a lower diffusivity in high
ich interpretation, given by density (large ¢) ones. With this functional formk .¢(¢) in

Eqg. (9) results in
oV[ @]

1
hBXD==57 Sa00 T IBEXD, (4) onh
(#) 0009 Feﬁ=—¢3+b¢2—D—¢=¢(¢—¢1)(¢z—¢), (12
where¢ is a Gaussian noise with zero mean and correlation 0
(E(x, 1) E(X',1"))=2€e5(x—x")8(t—1"), e being the noise
intensity. For the coefficient of the noise tergy¢), we
adopt

whereg, , depend on parameters, in particular on the control

parametei. It is worth noting here that in the deterministic

problem j=0) the reaction term is monostable while, as we

increase the noise intensity, the effective nonlinear tEgn

, (5)  becomes bistablgwithin the interval 6<\<b®D,/(8h)]

VD(¢) and finally, forA\>b2D,/(8h), becomes again monostable
(reentrance effegt Our choice ofF and D is one among

in order to guarantee that the ﬂuctuation-diSSipation relatiorb|enty of different forms for the d|ffus|v|ty |eading to a tran-

is fulfilled [27]. sition from monostable to bistable and inducing the SR phe-

As we are Considering the Stratonovich interpretation, th%omenon[see, for instance, the one used[%] that corre-
stationary solution of the associated Fokker-Planck equatiogponds exactly to the inverse of the present diffusion

9(¢)=

can be written a$28] coefficient, i.e., D(¢)=Dy(1+he?)]. Density-dependent
diffusivities arise in a large variety of systems modeled by
Psl ¢]~exp(—Ver/e), ®  reaction-diffusion equationf29]. In biology, for instance,

. . L population dynamics is usually driven by a diffusivity that
where the effective potentialed 4] is given by depends on the local populati$80]. We can also find ex-
L2 amples in physics, a couple of them are in polymer physics
Veﬁ[gé]:V[gb]—)\f dxInD(¢). (7)  (where the diffusion can abruptly drop several orders of
—Li2 magnitude at the gelation poif1]) and in diffusion of hy-
. . drogen in metal$32].
Here \ is a renormahzc_ad parameter related_etd)hrough_)\ A remarkable point is that=0 is always a root of o
= €/(2Ax) in a lattice discretization, wherx is the lattice  _ (see Fig. 1 This implies[from Eq. (8)] that ¢(x)=0 is

par_?rr]nete{ZS]. i d h . fixed an extremum oW ¢] for all values of\. In what follows
e extremes oWy correspond to the stationary fixed | o \vill call this structureg, .

points of the noise-sustained dynamics. They can be com- |, o qer to obtain the nonuniform extremes of the poten-

puted from the firs_t variation o¥.x(¢) with respect to¢ tial (and also of the probability densjtyve must(numeri-
equal to zero, that is, cally) solve

L2

Nal#:d=— | DOO@)40) P a3
- € st/ ™

d
D ( ¢st) d_X ¢st

dx
+Fer(4)16(X)dX 4=y =0,  (8)
for the stationary regimen profiless(x). This approach al-
where lows us to find both the stable and unstable solutions. To
analyze their stability we need to calculatéV, that de-

1 fines a Sturm-Liouville problem, with orthogonality weight
Fe($)=F($)+X D(¢)? @D(QS) ©) D(¢sy). From that analysis it results thet, (defined beforg
is stable forA>0, and in the bistability region we have two
is the effective nonlinearity which drives the dynamics. nonhomogeneous symmetric patterns: one unstahble
We consider the case of a monostable dynamics in absaddle and one stableb;. The typical form of these pat-
sence of noise terns is illustrated in Fig. 2.
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FIG. 1. Form of the nonlinearities for the deterministic case ~ F1G- 3. Nonequilibrium potentiaVeq{ ¢], as a function ofy,
(A=0), bistable case N=\.~0.8) and a monostable casa ( evaluated on the stationary patterns: curves correspond to stable
=1.2) in the reentrance region. The vertical scale was changed if®s), homogeneousdy), and unstable ¢,) patterns. The arrow
the deterministic case in order to clarify the figure. The parameteridicates the point wherd/eq ¢o]=Ver 45l corresponding ta
used areDy=1, h=1/2, andb=2. Note that¢=0 remains as a =A\~038.
root in all cases.

aroundb, results to be more sensitive to induce the periodic

In Fig. 3 we show [ é] vs \, evaluated on the different change in .the relativg stability of. the two attractors.
stationary solutions. We define, as the value ok at which Up to first-order in the amplitudé\b (assumed to be

we have symmetrical stability, i.e., whe Yy _ small in order to have a subthreshold periodic inptlte
y y Vil ol =Verl 4] transition rated\V, take the form

IIl. STOCHASTIC RESONANCE BETWEEN Wi(t)= w1~ asAb sin(wqt),

STRUCTURES Wi(t) = o+ apAb sin( wgt), (19

We are interested in the stochastic resonance phenomena .
occurring in the above-described system. For a window ofVNere the constantg, , and a,, are obtained from the
noise intensity the effective dynamics of the system isikramers-like formula for the transition raf84]

bistable, corresponding to a noise-induced nontrivial dynam- Ny [ detVd ¢i] M2

ics. We will resort to the so-calletivo-state approximation Wd)ﬁd:j: > W exd — (Verl &4l

[33], all details about the procedure and the evaluation of the effl ®u

SNR could be found ifi5]. We consider now that the system ~Ved &)/ €]. (15)

is subject, in the adiabatic limit, to a time periodic signal of

the formb=by+ S(t) where S(t)=Ab sin(wyt). The usual Here\ . is the unstable eigenvalue of the deterministic flux
way of rocking the potential is to introduce an additive peri-at the relevant saddle pointy() and

odic forcing(or linear periodic contribution to the potenjial

However, in the present case, a small periodic variatioh of p12= Wi dsm=o,
(16)
_dWl,Z
1.5 - T ' @y = F )
ds(t) St)=0
b These results allows us to calculate the autocorrelation
@101 $u 7 function, the power spectrum, and finally the SNR, that we
5 indicate byR. The details of the calculation were shown in
g Ref.[5]. ForR, and up to the relevarisecond order in the
2 signal amplitudeAb, we obtain
- 0.5 T
T (apuitaipy)’  m g
= = (17)
¢ Apgpr M1t po de pytps
0.0 . A .
-7.50 -3.75 0.00 3.75 7.50 where
x (arb. units) Lo
FIG. 2. Fixed points of the noise-sustained dynamics of the (I):f dxf¢s<X)D(¢’)¢’2d¢’ (18)
problem. We showg,=0, the stable homogeneous solution, and —L2 bo

both nonhomogeneous patterns: the unstébéeldle ¢, and the ) ) _
stable onep,. Here we have\.=\.~0.8, while the other param- gives a measure of the spatial coupling strength. In our case
eters values are the same as in Fig. 1. $o=0 and
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FIG. 4. Signal-to-noise ratio vs as results from Eq17). Here ) ) F‘" units) .
by=2, while other parameters remain unchanged. FIG. 6. Signal-to-noise ratio at. vs h. We can see a saturation

phenomena ak decreases.

Lz [gg(x) arctafivhey(x)]
o= DOJ dx h 1372 - 19 R phenomenon for the transition between two different pat-
terns, exploiting the concept afionequilibrium potential

In Fig. 4 we show the SNR as a function of the paramgter [23,24. In this work we have analyzed the SR phenomenon
(which is proportional toe). The existence of the typical in an extended system from a different point of view, that is,
maximum is the characteristic fingerprint of SR. For a win-studying SR between two attractors of theise-sustained
dow of noise intensity values, the system enhances the outtynamicg14,15.
put to the input periodic signal. We see that the maximum Some closely related work corresponds to the so-called
SNR occurs at the symmetric situation, that is\at\ .. doubly stochastic resonand@5], as well as to a previous

A similar behavior is observed in general for a wide rangework [26] that is tightly related to noise-induced phase tran-
of values forh andD, compatible with a bistable effective sijtions[8,9]. In both cases the authors have mainly resorted
dynamics. In particularh. is a monotonically decreasing to a standard mean-field approach, or to some estimate of the
function ofh, as we show in Fig. 5. For a given valuefaf  effective potential. Here we adopt a different approach, ob-
a numerical analysis of E417) indicates that the maximum taining numerically the exact form of the pattertimth the
of SNR take place at.(h). Note that, for a given value of,  stable and unstable oness well as the analytical expression
h appears as an additional control parameter that allows gf the nonequilibrium potential. In this way we were able to
fine-tuning of the symmetrical condition. Finally, in Fig. 6 obtain the transition rates and clearly quantify the SR phe-
we showR.=R(\.) vshin the range of values where Kram- nomenon by means of the SNR.

—L/2

er’s formulas apply35]. We have seen that the nonhomogeneous spatial coupling,
through density-dependent diffusivity, changes the effective
IV. CONCLUSIONS dynamics of the system and, in agreement W], that

) ~such nonhomogeneous behavior could contribute to enhance
The study of SR in extended or coupled systems, motiyhe SR phenomenon. The form of the patterns, position of the
vated by both some experimental results and the technologlyyaciors, and barrier’s height explicitly depend on the noise
cal interest, has recently attracted considerable atte”t'oi'?ntensity. We have found that there are ranges or windows of
[2-6,20. In some previous papef8—€] we have studied the yise intensities where the phenomenon could afisen-

trance.

1:00 ' l ' ' By considering the adiabatic limit and exploiting the two-
state approximation we have theoretically predicted the oc-
0.81F s currence of SR between those patterns. It is worth remarking
® here that it is the same noise source, the one that sustains the
5 bistable dynamics and induces SR for transitions among the
5 0.62 7 corresponding structures. The maximum of the SR response
A occurs in the symmetric case, in agreement with the results
< found in[5,6]. The SR phenomenon is robust with respect to
0441 ] variations of theh parameter of diffusivity, and wheh de-
creases the SNR maximum increases and shifts toward
0.25 ‘ . . . higher A values. The last fact follows from the associated
0.40 0.52 0.64 0.76 0.88 1.00 shift of the noise-induced transition to larger noise intensities
h (arb. units) which take place in the spatially uncoupled associated sys-
FIG. 5. A, vs h parameter of diffusivity. For smali values, tem [i.e., the zero-dimensional system resulting from sup-
and hence the noise intensity, increase monotonically. pressing the gradient term in E@)].
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